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Abstract. The cross section for e−e− → e−e− with arbitrary electron polarizations is calculated within
the Electroweak Standard Model for energies large compared to the electron mass, including the complete
virtual and soft-photonic O(α) radiative corrections. The relevant analytical results are listed, and a nu-
merical evaluation is presented for the unpolarized and polarized cross sections as well as for polarization
asymmetries. The relative weak corrections are typically of the order of 10%. At low energies, the bulk of
the corrections is due to the running of the electromagnetic coupling constant. For left-handed electrons,
at high energies the vertex and box corrections involving virtual W bosons become very important. The
polarization asymmetry is considerably reduced by the weak radiative corrections.

1 Introduction

The linear electron colliders of the next generation will
allow experiments with highly polarized electron and pho-
ton beams starting from a centre-of-mass energy of a few
hundred GeV up to the TeV range. The high degree of
polarization combined with a large luminosity provides a
powerful tool for suppressing backgrounds and sorting out
interesting physical effects. The main goal of these exper-
iments is the search for new phenomena both directly and
indirectly via precision measurements of standard quanti-
ties.

The study of Møller scattering [1], e−e− → e−e−, of-
fers some particularly interesting possibilities owing to its
large cross section, which leads to very good statistics.
On the one hand, small angle Møller scattering can be
used as a luminosity monitor just as Bhabha scattering
in e+e− colliders. On the other hand, the measurement of
parity-violating Møller asymmetries can be employed for a
very precise determination of the weak mixing angle [2,3].
Note that in contrast to the measurement of the effective
mixing angle at the Z-boson resonance, the Møller asym-
metries do not determine the mixing angle directly. In
higher orders, it can only be extracted from the measured
asymmetries if the other parameters of the Electroweak
Standard Model are kept fixed. Based on the lowest-order
expressions, Cuypers and Gambino [2] have shown that
∆ sin2 θw = ±0.0001 may be possible at a 2 TeV collider
with 90% electron-beam polarization and detector accep-
tance down to about 5◦. Simultaneously these measure-
ments enable a determination of the polarization degree of
the electron beams competitive with Compton polarime-
try with a relative precision below one per cent. This pro-
vides an important input for other precision experiments.

In order to achieve comparable accuracy in experi-
mental measurements and theoretical predictions, radia-
tive corrections to Møller scattering have to be taken into
account. Within QED, these corrections have been calcu-
lated for the unpolarized cross section in [4] and for po-
larized electrons in [5]. The electromagnetic corrections to
Møller scattering within the Electroweak Standard Model,
i.e. including the Z-boson-exchange diagrams, have been
analysed in [6,7]. The full electroweak corrections have so
far only been calculated at low energies

√
s � MZ [8].

In this case, corrections of −40% have been found for the
polarization asymmetry.

In this paper we present the complete virtual and soft
photonic O(α) electroweak radiative corrections, which
have been obtained by applying crossing symmetry to the
results for Bhabha scattering calculated in [9]. As in [9],
we do not discuss hard-photon corrections and neglect the
electron mass wherever possible. Our results are valid for
arbitrary polarizations of the external electrons.

The paper is organized as follows: In Sect. 2 we fix our
notation, review the lowest-order predictions and define
polarization asymmetries. In Sects. 3 and 4 we give all an-
alytical results for the electromagnetic and weak radiative
corrections. Numerical results for the radiative corrections
are presented and discussed in Sect. 5.

2 Lowest-order predictions

2.1 Lowest-order cross sections

We discuss, in the framework of the Electroweak Standard
Model [10], Møller scattering at high energies (

√
s � me).

The momenta of the incoming and outgoing electrons are
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Fig. 1. Born diagrams

denoted by p1, p2 and q1, q2, the corresponding helicities
by λ1, λ2 and σ1, σ2, respectively. Instead of using the
proper values ±1/2 we indicate the electron helicities sim-
ply by ± or by R,L.

In the centre-of-mass (CM) system the momenta read

pµ
1 = (E, 0, 0, E), qµ

1 = (E, E sinϑ, 0, E cos ϑ), (2.1)
pµ
2 = (E, 0, 0,−E), qµ

2 = (E,−E sinϑ, 0,−E cos ϑ),

where E denotes the energy of the electrons and ϑ the
scattering angle. The Mandelstam variables are given by

s = (p1 + p2)2 = (q1 + q2)2 = 4E2,

t = (p1 − q1)2 = (p2 − q2)2 = −s
1 − cos ϑ

2
,

u = (p1 − q2)2 = (p2 − q1)2 = −s
1 + cos ϑ

2
. (2.2)

The interaction of the electrons with the vector bosons
γ,Z,W is described by left- and right-handed coupling
constants gi

λ:

gγ
± = 1, gZ

− =
2s2

w − 1
2swcw

, gZ
+ =

sw

cw
,

gW
− =

1√
2 sw

, gW
+ = 0, (2.3)

with
cw =

MW

MZ
, sw =

√
1 − c2

w. (2.4)

The lowest-order amplitude gets contributions from
the exchange of photons and Z bosons in the u- and t-
channel diagrams shown in Fig. 1. The corresponding ma-
trix elements are denoted Mri

Born(λ1, λ2, σ1, σ2), with r =
u, t and i = γ, Z. Owing to helicity selection rules, in the
ultra-relativistic limit (s, |t|, |u| � m2

e) only the following
matrix elements are non-vanishing (λ = ±):

Mui
Born(λ, λ, λ, λ) = Mui

1 (λ) = gi
λgi

λ

2s

u − M2
i

,

Mui
Born(λ, −λ, −λ, λ) = Mui

2 (λ) = gi
+gi

−
2t

u − M2
i

,

Mti
Born(λ, λ, λ, λ) = Mti

1 (λ) = gi
λgi

λ

2s

t − M2
i

,

Mti
Born(λ, −λ, λ, −λ) = Mti

3 (λ) = gi
+gi

−
2u

t − M2
i

. (2.5)

Summing and squaring the matrix elements yields the
Born cross sections in the CM frame(

dσ

dΩ

)
a,Born

(λ) =
α2

4s

∣∣∣∑
r,i

Mri
a,Born(λ)

∣∣∣2; (2.6)

the index a = 1, 2, 3 corresponds to the different sets of he-
licities in (2.5). The cross sections for arbitrary degrees of
longitudinal polarization P1, P2 of the incoming electrons
and unpolarized outgoing electrons are obtained as(

dσ

dΩ

)
(P1, P2) =

∑
λ1,λ2

1 + λ1P1

2
1 + λ2P2

2

(
dσ

dΩ

)
λ1,λ2

.

(2.7)
In lowest order, the corresponding polarized cross sections
are given by(

dσ

dΩ

)
λ,λ

=
(

dσ

dΩ

)
1,Born

(λ)

=
α2

s

[∑
i

(
gi

λ

)2( s

u − M2
i

+
s

t − M2
i

)]2

,

(
dσ

dΩ

)
λ,−λ

=
∑

a=2,3

(
dσ

dΩ

)
a,Born

(λ)

=
α2

s

[(∑
i

gi
−gi

+
t

u − M2
i

)2

+

(∑
i

gi
−gi

+
u

t − M2
i

)2]
. (2.8)

Notice that for equal polarizations of the incoming elec-
trons (RR or LL) the u- and t-channel matrix elements
interfere, whereas in the other case (RL or LR) no such
interference exists.

As a consequence of rotational invariance, the RL and
LR cross sections are equal. Furthermore, the polarized
cross sections (2.8) are symmetric with respect to ϑ = 90◦
owing to presence of two identical fermions in the final
state. These symmetries hold to all orders of perturbation
theory.

For |t|, |u| � M2
Z the polarized cross sections take the

simple form(
dσ

dΩ

)
RR

∼ α2

s

16
c4
w

1
sin4 ϑ

,(
dσ

dΩ

)
LL

∼ 1
16s4

w

(
dσ

dΩ

)
RR

,(
dσ

dΩ

)
LR

∼ (1 − cos ϑ)4 + (1 + cos ϑ)4

64

(
dσ

dΩ

)
RR

. (2.9)

The integrated cross section is given by

σ =
1
2

∫
dΩ

(
dσ

dΩ

)
=
∫

cos ϑ>0
dΩ

(
dσ

dΩ

)
, (2.10)

with the symmetry factor 1/2 owing to the two identical
electrons in the final state.

2.2 Polarization asymmetries

With polarized electron beams and the possibility to in-
vert these polarization, four different polarized cross sec-
tions can be measured. Assuming the same luminosity L
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for all channels, the numbers of events for these polariza-
tion settings are given by:

NRR = L
∫

dΩ

(
dσ

dΩ

)
(+P1,+P2),

NRL = L
∫

dΩ

(
dσ

dΩ

)
(+P1,−P2),

NLR = L
∫

dΩ

(
dσ

dΩ

)
(−P1,+P2),

NLL = L
∫

dΩ

(
dσ

dΩ

)
(−P1,−P2), (2.11)

where the integral extends over a suitable volume of phase
space.

From these four event rates, three independent asym-
metries can be formed [2,3]. A particularly suitable set
consists of

NLL + NLR − NRL − NRR

NLL + NLR + NRL + NRR
= P1A

(1)
LR,

NLL + NRL − NLR − NRR

NLL + NLR + NRL + NRR
= P2A

(1)
LR,

√
(NLL − NRR)2 − (NRL − NLR)2

(NLL + NRR)2 − (NLR + NRL)2
= A

(2)
LR. (2.12)

The asymmetry functions

A
(1)
LR =

σLL − σRR

σLL + 2σLR + σRR
(2.13)

and

A
(2)
LR =

|σLL − σRR|√
(σLL + σRR)2 − (2σLR)2

(2.14)

are independent of the polarization degrees. Moreover, for
scattering angles near to ϑ = 90◦ where σLR is suppressed
with respect to σLL and σRR, A

(1)
LR and A

(2)
LR are roughly

equal to

A
(3)
LR =

σLL − σRR

σLL + σRR
. (2.15)

All asymmetry functions A
(k)
LR, k = 1, 2, 3, are proportional

to

σLL − σRR ∝ (gZ
−
)2 − (gZ

+
)2 ∝ 1 − 4s2

w, (2.16)

and, owing to s2
w ≈ 0.23 ∼ 1/4, they are very sensitive to

small variations of the weak mixing angle.
The set of asymmetries defined in (2.12) is particularly

useful in order to determine the polarization degrees of
the two electron beams and the weak mixing angle. In the
third asymmetry the polarization degrees drop out, and
the weak mixing angle can be directly determined. Then
A

(1)
LR is fixed and the first two asymmetries can be used to

measure directly the polarization degrees.

3 Electromagnetic radiative corrections

Using crossing symmetry, the one-loop radiative correc-
tions to Møller scattering can be directly obtained from
the results for Bhabha scattering listed in [9]. The corre-
sponding Feynman diagrams result from those given in
[9] via crossing. The results of [9] have been obtained
within the on-shell renormalization scheme [11] with the
fine-structure constant α and the masses MW, MZ, MH
and mf as physical parameters.

In the ultra-relativistic limit the amplitudes for the vir-
tual corrections factorize into Born matrix elements and
correction factors (r = u, t; i = γ, Z; a = 1, 2, 3)

Mri
a,virt(λ) = Mri

a (λ)δri
a,virt(λ). (3.1)

The virtual corrections can be split into electromagnetic
and weak corrections

δri
a,virt(λ) = δri

a,em,virt(λ) + δri
a,w,virt(λ). (3.2)

Note that we define this splitting differently from [9]. Into
the electromagnetic corrections we include only those di-
agrams (and the corresponding counterterms) that arise
from the Born matrix elements by adding a photon line;
all other corrections are considered as weak corrections. In
contrast to [9] the fermionic loops contained in the photon
self-energy are included in the weak corrections.

3.1 Electromagnetic virtual corrections

The electromagnetic virtual corrections consist of vertex
(V) and box diagrams (B) with virtual photons

δri
a,em,virt(λ) = δri

a,em,V(λ) + δri
a,em,B(λ). (3.3)

The corresponding amplitudes are infrared (IR)-divergent.
The IR singularities are regularized by an infinitesimal
photon mass µ.

For each vertex in the Born diagrams there is a vertex-
correction diagram. The corresponding correction factors
read

δri
a,em,V(λ) = 2Fem(r), (3.4)

with the electromagnetic form factor Fem given in [9].
Each Born diagram with photon-exchange gives rise to
two box diagrams with double photon exchange and cor-
rection factors

δuγ
1
2 ,em,B

(λ) = Cγγ
± (u, t), δtγ

1
3 ,em,B

(λ) = Cγγ
± (t, u), (3.5)

and for each Born diagram with Z-boson exchange four
box diagrams with Z-boson and photon exchange and cor-
rection factors exist

δuZ
1
2 ,em,B(λ) = CγZ

± (u, t), δtZ
1
3 ,em,B(λ) = CγZ

± (t, u). (3.6)

The analytical expressions for the electromagnetic box
functions Cγγ

± (s, t) and CγZ
± (s, t) can be found in [9]. To

make correct use of these results, recall that the Mandel-
stam variables are related by s + t + u = 0 in the ultra-
relativistic limit.
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3.2 Soft-photon bremsstrahlung

In order to obtain an IR-finite cross section one has to add
real bremsstrahlung. In the soft-photon limit, i.e. restrict-
ing the energy of the emitted photon by k0 ≤ ∆E � √

s,
the corresponding cross section factorizes into the lowest-
order cross section and a correction factor(

dσ

dΩ

)
a,brems

(λ) = δbrems

(
dσ

dΩ

)
a,Born

(λ) (3.7)

with

δbrems =
α

π

{
4 ln

2∆E

µ

[
ln

ut

sm2
e

− 1
]

−
[
ln

s

m2
e

− 1
]2

+1 − 2π2

3
+ X

}
, (3.8)

and

X =
(
ln

u

t

)2
+

π2

3
. (3.9)

Note that, owing to the condition k0 ≤ ∆E, this re-
sult is frame-dependent and cannot be directly obtained
from the corresponding result for Bhabha scattering via
crossing symmetry.

3.3 Corrections to the polarized cross sections

The virtual O(α) corrections to the polarized cross sec-
tions (2.6) are given by the interference terms between
lowest-order and one-loop matrix elements

∆

(
dσ

dΩ

)
a,em,virt

(λ)

=
α2

4s

∑
r,i

∑
r′,i′

Re
{

Mri
a (λ)(Mr′i′

a (λ))∗

×
[
δri
a,em,virt(λ) + (δr′i′

a,em,virt(λ))∗
]}

. (3.10)

After adding the soft-photon bremsstrahlung cross sec-
tion, the total IR-finite O(α) electromagnetic corrections
can be written as follows:

∆

(
dσ

dΩ

)
a,em

(λ)

= ∆

(
dσ

dΩ

)
a,em,virt

(λ) +
(

dσ

dΩ

)
a,brems

(λ)

=
α2

4s

∑
r,i

∑
r′,i′

Re
{

Mri
a (λ)(Mr′i′

a (λ))∗

×
[
δri
a,em(λ) + (δr′i′

a,em(λ))∗ + γ
]}

, (3.11)

with1

δuγ
1
2 ,em

(λ) =
α

2π
[Z + Y (u) + X] ± 2Iγγ

5

(
u,

t

s

)
,

1 Note that in the corresponding formula (3.24) in [9] the
functions Iγγ

5 (u, t) and IγZ
5 (u, t) should not be multiplied with

α/2π

δtγ
1
3 ,em

(λ) =
α

2π
[Z + Y (t) + X] ± 2Iγγ

5

(
t,

u

s

)
,

δuZ
1
2 ,em(λ) =

α

2π
[Z + Y (u) + X + 2D(u, t)]

±4IγZ
5

(
u,

t

s

)
,

δtZ
1
3 ,em(λ) =

α

2π
[Z + Y (t) + X + 2D(t, u)]

±4IγZ
5

(
t,

u

s

)
, (3.12)

and the cut-off-dependent factor

γ = 4
α

π
ln

2∆E√
s

[
ln

ut

sm2
e

− 1
]

. (3.13)

The box functions Iγγ
5 (u, t) and IγZ

5 (u, t) are defined in
[11], and the function D(u, t) reads2

D(u, t) = − ln
−t

s

[
ln

M2
Z − u

−u
+ ln

M2
Z − u

M2
Z

]

+ Sp
(

M2
Z + t

t

)
− Sp

(
M2

Z + s

s

)
(3.14)

with the Spence function Sp(x) = − ∫ 1
0 (dt/t) ln (1 − xt).

Furthermore, we have introduced

Y (r) = −
(

ln
−r

s

)2

− 2 ln
−r

s
ln

r + s

s
+ 3 ln

−r

s
− π2,

Z = 3 ln
s

m2
e

+
2π2

3
− 4, (3.15)

which correspond to the quantities defined in [9].

4 Weak radiative corrections

4.1 Corrections to the matrix elements

The weak radiative corrections result from self-energy (Σ),
vertex (V) and box (B) diagrams

δri
a,w,virt(λ) = δri

a,w,Σ(λ) + δri
a,w,V(λ) + δri

a,w,B(λ). (4.1)

In the on-shell renormalization scheme the electron
wave function is not renormalized, and the only self-energy
corrections to Møller scattering come from the exchanged
gauge bosons. Each photon exchange Born diagram gives
rise to a photon-self-energy correction term, and each Z-
boson-exchange Born diagram to three correction terms
that involve the Z-self-energy, and the γ–Z and Z–γ mix-
ing energy. The corresponding correction factors are given
by

δrγ
a,w,Σ(λ) = Πγ(r),

δrZ
1,w,Σ(λ) = ΠZ(r) +

2
gZ

λ

ΠγZ(r),

δrZ
2
3 ,w,Σ

(λ) = ΠZ(r) +
(

1
gZ
+

+
1
gZ−

)
ΠγZ(r), (4.2)

2 In the definition of this function in (3.25) in [9] the factor
2 in front of the Spence function should be removed
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with

Πγ(r) = −Σγ(r)
r

, ΠZ(r) = − ΣZ(r)
r − M2

Z
,

ΠγZ(r) = −ΣγZ(r)
r

. (4.3)

The self-energies and mixing energies can be found in [12].
The hadronic part of the photon vacuum polarization as-
sociated with light quarks cannot be calculated reliably
within perturbation theory. Instead, the contribution of
the five light quarks can be directly obtained from the
cross section for e+e− → hadrons via a dispersion integral
[13]. We use the parameterization

Re Πγ
had(s) = A + B ln (1 + C|s|), (4.4)

with A, B, C adjusted to a recent fit [14] of the experi-
mental data (Note that the constants A, B, C are fixed
differently in different regions).

The weak vertex corrections involve, besides contri-
butions from the exchange of virtual Z and W bosons, a
non-abelian contribution and lead to the correction factors

δri
1,w,V(λ) = 2F i

w(r, λ),

δri
2
3 ,w,V(λ) = F i

w(r, +) + F i
w(r, −), (4.5)

with the weak form factors F i
w(r, λ) [9]. The weak box cor-

rections consist of four diagrams with double Z-boson ex-
change and two diagrams with double W-boson exchange.
By convention they are treated as corrections to the pho-
ton-exchange Born diagrams. The corresponding correc-
tion factors read

δuγ
1,w,B(λ) = (gZ

λ )4CZZ
+ (u, t) + (gW

λ )4CWW
+ (u, t),

δtγ
1,w,B(λ) = (gZ

λ )4CZZ
+ (t, u) + (gW

λ )4CWW
+ (t, u),

δuγ
2,w,B(λ) = (gZ

+)2(gZ
−)2CZZ

− (u, t),

δtγ
3,w,B(λ) = (gZ

+)2(gZ
−)2CZZ

− (t, u), (4.6)

while δrZ
a,w,B(λ) = 0. The weak box functions CZZ

± (s, t)
and CWW

+ (s, t) are given in [9] and [11].

4.2 Corrections to the polarized cross sections

The weak O(α) corrections to the polarized cross sections
(2.6) read

∆

(
dσ

dΩ

)
a,w

(λ)

=
α2

4s

∑
r,i

∑
r′,i′

Re
{

Mri
a (λ)(Mr′i′

a (λ))∗

×
[
δri
a,w,virt(λ) + (δr′i′

a,w,virt(λ))∗
]}

. (4.7)

Finally, the total O(α) corrections to the cross section are
given by

∆

(
dσ

dΩ

)
a

(λ) = ∆

(
dσ

dΩ

)
a,w

(λ) + ∆

(
dσ

dΩ

)
a,em

(λ). (4.8)

5 Numeric results and discussion

In the previous chapters we have summarized the analyti-
cal formulas for the polarized Møller cross section includ-
ing the complete O(α) radiative corrections in the soft-
photon approximation. Here, we present a numerical eval-
uation of these results obtained with the masses

MZ = 91.187 GeV, MW = 80.4 GeV,

MH = 300 GeV, mt = 175 GeV,
(5.1)

and with the fine-structure constant α = 1/137.03604.
Our main interest lies in the discussion of the rela-

tive weak corrections defined by δw = ∆
( dσ

dΩ

)
w/
( dσ

dΩ

)
Born.

These are sensitive to the complete structure of the Elec-
troweak Standard Model and may influence the determi-
nation of the weak mixing angle from asymmetries con-
siderably. On the other hand, the electromagnetic cor-
rections involve only well-known physics but are sensitive
to the experimental cuts for hard-photon emission. They
must be included properly for specific experiments, but
as far as the asymmetries are concerned, they are rela-
tively unimportant. The soft-photon effects factorize and
cancel exactly, and the same should be true for the bulk
of the hard-photon effects. The remaining electromagnetic
effects are mostly proportional to the lowest-order asym-
metries and therefore do not give rise to large corrections.
We note that the complete electromagnetic corrections for
the luminosity measurement have been discussed in [6].

The weak corrections are separated in a gauge-invari-
ant way into fermionic and bosonic parts

δw = δw,fer + δw,bos. (5.2)

The fermionic part consists of all diagrams with closed
fermion loops and fermionic counterterms and is, in the
renormalization scheme of [11], given by the hadronic and
leptonic contributions to the gauge-boson self-energies.
The remaining weak corrections are called bosonic and
are, within the ’t Hooft–Feynman gauge, further split into
self-energy, vertex, and box contributions,

δw,bos = δw,bos,Σ + δw,bos,V + δw,bos,B. (5.3)

The fermionic corrections involve, in particular, the con-
tributions that are related to the running of the electro-
magnetic coupling constant α. Including only the contri-
butions of the light fermions, we define the corresponding
correction factors to the matrix elements Mri

a (λ) as

δrγ
a,run(λ) = Πγ

f 6=top(r),

δrZ
a,run(λ) = Πγ

f 6=top(M2
Z), r = u, t. (5.4)

Then, the fermionic corrections can be split into those
related to the running of α and the remaining ones

δw,fer = δw,run + δw,fer,rem. (5.5)

The different contributions to the weak corrections for
the unpolarized cross section (P1 = P2 = 0) are presented
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Fig. 2. Individual contributions
to the relative weak corrections
to the unpolarized differential
cross section for ϑ = 90◦

in Fig. 2 for a scattering angle of 90◦ and CM energies be-
tween 50 GeV and 2 TeV. The complete weak corrections
are of the order 10% and vary slowly with energy (in the
range between +5.4% and +11.7%). For energies below
the Z-boson mass they are dominated by the fermionic
contributions, which grow logarithmically from 9.7% at
50 GeV to 17.5% at 2 TeV. The bulk of the fermionic cor-
rections is due to the running of α (ranging between 10.0%
and 16.2%), and the remaining fermionic corrections are
less than 1.3% in the considered energy range. While the
bosonic corrections are less than 1% below 300 GeV, they
reduce the weak corrections considerably at higher en-
ergies, e.g. by 12% at 2 TeV. This reduction originates
predominantly from the box corrections, more precisely
from the boxes involving W-boson exchange. The weak
vertex corrections yield a positive contribution (5.2% at
2 TeV) which is again dominated by the diagrams involv-
ing W bosons. Finally, the bosonic self-energy corrections
contribute −2.9% at 2 TeV.

In order to allow for a detailed check of our calcula-
tions we present in Table 1 the differential and integrated
lowest-order cross sections together with the relative elec-
tromagnetic and weak corrections split into fermionic and
bosonic parts. The fermionic corrections are further di-
vided into those originating from the running of α and
the rest.

We recall that the electromagnetic corrections are eval-
uated in the soft-photon approximation and hence depend
strongly on the soft-photon-energy cut-off which was set
to ∆E = 0.05

√
s. They are strongly reduced once hard

bremsstrahlung is included.
In Figs. 3 and 4 we show the lowest-order cross sec-

tions and the corresponding relative weak corrections for

various polarizations of the incoming electrons at the scat-
tering angle ϑ = 90◦ as a function of the CM energy. For√

s � MZ, the lowest-order cross sections drop as 1/s,
and the ratios between different polarized cross sections
are energy-independent [cf. (2.9)]. The relative corrections
are about 10% for small energies and vary between -5%
and 18% at 2 TeV depending on the polarization. Besides
the complete weak corrections we show in Fig. 4 also the
weak corrections that remain after the subtraction of the
effects of the running α [see (5.4)]. These remaining weak
corrections are small at low energies for all polarizations
and for purely right-handed electrons at all energies. The
large negative corrections for the other polarizations at
high energies are due to vertex and box diagrams involv-
ing W-boson exchange, which contribute only for at least
one or two left-handed incoming electrons, respectively.
The small differences in the corrections for different polar-
izations at low energies are due to the γ–Z mixing-energy
and to differences in the interference structures in (2.8).

Figures 5 and 6 illustrate the angular dependence of
the polarized lowest-order cross sections and the corre-
sponding corrections, respectively. Owing to Fermi sym-
metry the cross sections are forward–backward symmet-
ric, and it is sufficient to consider the forward direction. In
the very forward direction the lowest-order cross section
turns into the Rutherford cross section that diverges for
θ → 0 like 1/t2 and is independent of the polarization of
the incoming electrons. As can be seen from (2.9), for high
energies and not too small scattering angles (|t| � M2

Z),
the ratio between the different polarized lowest-order cross
sections takes a particularly simply form. Thus, the ratio
of LL to RR is constant and roughly equal to one, and
the ratio of LR to RR decreases from 1 at ϑ = 0◦ to 1/32
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Table 1. Lowest-order cross sections and relative corrections for unpolarized particles

√
s ϑ

(
dσ
dΩ

)
Born

δem δw δw,bos δw,fer δw,run δw,fer,rem

[GeV] [pb] [%] [%] [%] [%] [%] [%]

10◦ 36001 −26.95 6.98 −0.00 6.98 6.99 −0.01

30◦ 476.75 −30.22 9.25 −0.01 9.25 9.36 −0.11

100 90◦ 23.024 −32.82 10.68 0.02 10.66 11.40 −0.74

10◦ < ϑ < 90◦ 3461.1 −28.42 7.98 −0.00 7.99 8.05 −0.06

30◦ < ϑ < 90◦ 402.08 −31.39 9.96 −0.00 9.96 10.27 −0.32

10◦ 1452.9 −31.59 10.03 −0.19 10.22 10.36 −0.14

30◦ 21.326 −34.85 10.89 −1.16 12.05 12.67 −0.62

500 90◦ 1.2366 −37.31 11.27 −2.36 13.63 14.06 −0.43

10◦ < ϑ < 90◦ 145.61 −33.13 10.53 −0.60 11.13 11.45 −0.33

30◦ < ϑ < 90◦ 19.533 −36.02 11.00 −1.76 12.77 13.37 −0.60

10◦ 98.713 −35.58 8.27 −4.29 12.56 13.15 −0.59

30◦ 1.4375 −38.78 5.11 −10.04 15.16 15.11 0.05

2000 90◦ 0.07957 −41.07 5.46 −12.05 17.51 16.21 1.30

10◦ < ϑ < 90◦ 9.9259 −37.08 6.80 −6.95 13.74 14.07 −0.33

30◦ < ϑ < 90◦ 1.2867 −39.88 5.02 −11.23 16.25 15.68 0.57
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Fig. 3. Unpolarized (00) and
polarized (RR,LL,LR) differen-
tial cross sections in Born ap-
proximation (ϑ = 90◦)
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the running α (ϑ = 90◦)
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Fig. 5. Unpolarized (00) and
polarized (RR,LL,LR) differen-
tial Born cross section as a func-
tion of the scattering angle ϑ for
different CM energies
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Fig. 6. Relative weak correc-
tions to the unpolarized (00)
and polarized (RR,LL,LR) dif-
ferential cross sections as a func-
tion of the scattering angle ϑ
for different CM energies includ-
ing (upper curves) and exclud-
ing (lower curves) the effects of
the running α

at ϑ = 90◦. The relative weak corrections vanish exactly
in the forward direction. This can be explained as follows:
In the forward direction, the lowest-order cross section is
determined solely by the t-channel photon-exchange dia-
gram which involves the 1/t pole. Similarly, only correc-
tions that involve this pole are relevant, i.e. the self-energy
and vertex corrections to the dominating lowest-order di-
agram. However, at the pole the virtual photon in these
diagrams becomes real and these corrections vanish owing
to the on-shell renormalization condition for the electric
charge. For finite scattering angles, the weak corrections
and their composition behave roughly as for the case of
90◦ scattering discussed above.

In Figs. 7 and 8 we show the differential polarization
asymmetries A

(k)
LR, k = 1, 2, 3, in Born approximation and

including weak one-loop corrections. The lowest-order
asymmetries are very small for low energies, grow in the
energy range where |t| ∼ MZ and approach constant val-
ues for |t| � MZ. For A

(3)
LR the asymptotic value is inde-

pendently of the scattering angle given by (1−16s4
w)/(1+

16s4
w) ≈ 0.1156. The three asymmetries have similar en-

ergy dependence, and A
(2)
LR is close to A

(3)
LR in particular for

ϑ = 90◦. The relative complete weak corrections, shown in
Fig. 8, are practically equal for all three asymmetries (the
three curves in Fig. 8 can hardly be distinguished) and
are about −40% for energies up to a few hundred GeV.
In this regime the asymmetry is mainly due to the γ–Z
mixing energy, while the effect of the running α (which is
included in Fig. 8) cancels to a large extent. Owing to the
strong parity-violating effects of the weak bosonic correc-
tions the asymmetries are even further reduced at higher

energies and reverse sign above about 2 TeV. The large
corrections to the asymmetries arise from the fact, that
many of the weak corrections like the γ–Z mixing energy
or the contributions involving virtual W bosons are not
suppressed by 1 − 4s2

w as the lowest-order asymmetries
[8]. As a consequence these corrections are enhanced by
a factor of about 10 in the asymmetries. Some numerical
results for the asymmetries A

(k)
LR in lowest-order approx-

imation and including the weak corrections are listed in
Table 2. As illustrated in Fig. 8, the purely electromagnetic
corrections affect the asymmetries only weakly.

For s = 0.05 GeV2 and ϑ = 90◦ Czarnecki and Mar-
ciano have found corrections to the asymmetry A

(3)
LR of

−40±3% using the MS scheme, taking the Fermi constant
Gµ as input, and including electromagnetic corrections.
Translating this result to the on-shell scheme with MW as
input by using the relations given in [15] and subtracting
the electromagnetic corrections yields −49% whereas we
find −48% in good agreement.

6 Summary

We have calculated the O(α) radiative corrections to the
process e−e− → e−e− within the Electroweak Standard
Model using the soft-photon approximation for real pho-
ton emission. All relevant analytical results for the correc-
tions to the polarized cross section have been given. The
corrections have been split in a gauge-invariant way into
electromagnetic and weak ones, and we have focused on
the weak corrections.
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Table 2. Left-right asymmetries in Born approximation ALR,Born and including weak one-
loop corrections ALR,w in units of 10−3

√
s [GeV] ϑ A

(1)
LR,Born A

(1)
LR,w A

(2)
LR,Born A

(2)
LR,w A

(3)
LR,Born A

(3)
LR,w

10◦ 1.058 0.695 6.934 4.536 2.067 1.357

30◦ 9.610 6.648 21.46 14.84 16.01 11.07

100 90◦ 48.72 35.14 52.39 37.81 52.25 37.71

10◦ < ϑ < 90◦ 5.042 3.536 15.77 11.00 9.149 6.410

30◦ < ϑ < 90◦ 23.33 16.60 34.94 24.84 32.27 22.95

10◦ 16.33 9.848 42.08 25.65 28.39 17.16

30◦ 67.89 42.77 90.53 57.52 86.91 55.08

500 90◦ 107.0 70.55 110.3 72.80 110.2 72.77

10◦ < ϑ < 90◦ 38.66 24.19 66.82 42.15 57.93 36.39

30◦ < ϑ < 90◦ 87.16 55.93 101.6 65.49 100.4 64.68

10◦ 74.12 21.84 101.3 30.53 96.54 28.89

30◦ 96.26 2.246 115.0 2.730 113.2 2.679

2000 90◦ 112.1 10.58 115.3 10.89 115.2 10.89

10◦ < ϑ < 90◦ 86.06 14.04 109.1 18.16 106.1 17.57

30◦ < ϑ < 90◦ 102.9 3.421 115.1 3.866 114.4 3.837

The weak corrections to the unpolarized cross section
are typically of the order 10%. After subtracting the ef-
fect of the running of the electromagnetic coupling con-
stant, the remaining corrections are small at low ener-
gies. The corrections to the cross section for purely right-
handed electrons are dominated by the fermion-loop con-
tribution to the gauge-boson self-energies, in particular by
the contributions associated with the running electromag-
netic coupling, and grow logarithmically with the centre-
of-mass energy. For left-handed electrons the corrections
involve in addition vertex and box diagrams with virtual
W bosons, which yield sizeable negative corrections at en-
ergies higher than the Z-boson mass.

The polarization asymmetry, which ranges between 0
and 0.12 in lowest order, gets relative corrections of the
order −40% for CM energies up to 500 GeV. For higher
energies the parity-violating corrections increase fast and
change the sign of the asymmetry above 2 TeV.
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